What is a microgrid?

March 13, 2023
How is a microgrid defined? A few different definitions exist. Here we set out to explain what we mean by ‘microgrid’ at Microgrid Knowledge.

How is a microgrid defined? A few different definitions exist. Here we set out to explain what we mean by “microgrid” at Microgrid Knowledge.

A microgrid is a self-sufficient energy system that serves a discrete geographic footprint, such as a college campus, hospital complex, business center or neighborhood.

Within microgrids are one or more kinds of distributed energy (solar panels, wind turbines, combined heat and power, generators) that produce its power. In addition, many newer microgrids contain energy storage, typically from batteries. Some also now have electric vehicle charging stations.

Interconnected to nearby buildings, the microgrid provides electricity and possibly heat and cooling for its customers, delivered via sophisticated software and control systems.
Microgrid defined by three key characteristics

1. A microgrid is local

First, this is a form of local energy, meaning it creates energy for nearby customers. This distinguishes microgrids from the kind of large centralized grids that have provided most of our electricity for the last century. Central grids push electricity from power plants over long distances via transmission and distribution lines. Delivering power from afar is inefficient because some of the electricity – as much as 8% to 15% – dissipates in transit. A microgrid overcomes this inefficiency by generating power close to those it serves; the generators are near or within the building, or in the case of solar panels, on the roof.

2. A microgrid is independent

Second, a microgrid can disconnect from the central grid and operate independently. This islanding capability allows it to supply power to its customers when a storm or other calamity causes an outage on the power grid. In the US, the central grid is especially prone to outages because of its sheer size and interconnectedness – more than 5.7 million miles of transmission and distribution lines. As we learned painfully during what’s known as the Northeast Blackout of 2003, a single tree falling on a power line can knock out power in several states, even across international boundaries into Canada. By islanding, a microgrid escapes such cascading grid failures.

Learn more about microgrids by joining us at Microgrid 2022:  Microgrids as Climate Heroes, a conference to be hosted by Microgrid Knowledge June 1-2 in Philadelphia, Pennsylvania. Registration is now open.

While microgrids can run independently, most of the time they do not (unless they are located in a remote area where there is no central grid or an unreliable one). Instead, microgrids typically remain connected to the central grid. As long as the central grid is operating normally, the two function in a kind of symbiotic relationship, as explained below.

3. A microgrid is intelligent

Third, a microgrid – especially advanced systems – is intelligent. This intelligence emanates from what’s known as the microgrid controller, the central brain of the system, which manages the generators, batteries and nearby building energy systems with a high degree of sophistication. The controller orchestrates multiple resources to meet the energy goals established by the microgrid’s customers. They may be trying to achieve lowest prices, cleanest energy, greatest electric reliability or some other outcome. The controller achieves these goals by increasing or decreasing use of any of the microgrid’s resources – or combinations of those resources – much as a conductor would call upon various musicians to heighten, lower or stop playing their instruments for maximum effect.

A software-based system, the controller can manage energy supply in many different ways. But here’s one example. An advanced controller can track real-time changes in the power prices on the central grid. (Wholesale electricity prices fluctuate constantly based on electricity supply and demand.) If energy prices are inexpensive at any point, it may choose to buy power from the central grid to serve its customers, rather than use energy from, say, its own solar panels. The microgrid’s solar panels could instead charge its battery systems. Later in the day, when grid power becomes expensive, the microgrid may discharge its batteries rather than use grid power.

Microgrids may contain other energy resources – combined heat and power, wind power, reciprocating engine generators, fuel cells – that add even greater complexity and nuance to these permutations.

Working together via complex algorithms, the microgrid’s resources create a whole that is greater than the sum of its parts. They drive system performance to a level of efficiency none could do alone. All of this orchestration is managed in a near instantaneous fashion – autonomously. There is no need for human intervention.

What a microgrid is not

It’s important to note here what a microgrid is not. Some people use the term to describe a simple distributed energy system, such as rooftop solar panels. A key difference is that a microgrid will keep the power flowing when the central grid fails; a solar panel alone will not. Many homeowners with solar panels are unaware of this fact and are surprised that they lose power during a grid outage.

Simple backup generators also are not microgrids. Such systems are only employed in emergencies; microgrids operate 24/7/365 managing and supplying energy to their customers.

Side Note: The Department of Energy offers a more formal definition for a microgrid, describing it as a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. Microgrids can connect and disconnect from the grid to enable them to operate in both grid-connected or island mode.

How many microgrids and where?

Microgrids have been around for decades, but until recently were used largely by college campuses and the military. So the total number of microgrids is relatively small but growing. Guidehouse (previously Navigant) forecasts that the market will near $39.4 billion by 2028.

But the pace of installation has picked up and is expected to grow dramatically as distributed energy prices drop and worries heighten about electric reliability because of severe storms, cyberattacks and other threats.

Guidehouse expects global microgrid capacity to reach 19,888.8 MW by 2028, up from  3,480.5 MW in 2019. The research firm sees North America and Asia Pacific as the centers of growth.

Want to learn more about microgrids? See other articles in About Microgrids.

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is an award-winning writer and editor who specializes in the energy industry. She is chief editor and co-founder of Microgrid Knowledge and serves as co-host of the publication’s popular conference series. She also co-founded RealEnergyWriters.com, where she continues to lead a team of energy writers who produce content for energy companies and advocacy organizations.

She has been writing about energy for more than two decades and is published widely. Her work can be found in prominent energy business journals as well as mainstream publications. She has been quoted by NPR, the Wall Street Journal and other notable media outlets.

“For an especially readable voice in the industry, the most consistent interpreter across these years has been the energy journalist Elisa Wood, whose Microgrid Knowledge (and conference) has aggregated more stories better than any other feed of its time,” wrote Malcolm McCullough, in the book, Downtime on the Microgrid, published by MIT Press in 2020.

Twitter: @ElisaWood

LinkedIn: Elisa Wood

Facebook:  Microgrids

Related Content

Trueffelpix/Shutterstock.com
Trueffelpix/Shutterstock.com
Trueffelpix/Shutterstock.com
Trueffelpix/Shutterstock.com
Trueffelpix/Shutterstock.com
Trueffelpix/Shutterstock.com

What a Microgrid Is Not

June 28, 2023
Over the years we’ve heard about many microgrids that are not microgrids. The term has become sexy, so sometimes it's overused. Here are four technologies commonly misidentified...

Only through Standardization Can Microgrids Accelerate the Energy Transition

Jan. 18, 2024
Jana Gerber, North America microgrid president at Schneider Electric discusses how standardizing microgrids will accelerate the energy transition.

PowerSecure_Cover
PowerSecure_Cover
PowerSecure_Cover
PowerSecure_Cover
PowerSecure_Cover

Before, During & After the Storm: Quantifying Resiliency and Reliability

With 1,800 managed microgrid systems across the country, PowerSecure provides clean, reliable and resilient power to customers for everyday operations and during unanticipated...