Navy becomes latest military branch to set a microgrid goal as part of climate strategy

May 27, 2022
The US Navy and Marine Corps said it plans to build cybersecure microgrids at critical military facilities as part of a climate strategy released this week.

The US Navy and Marine Corps said it plans to build cybersecure microgrids at critical military facilities as part of a climate strategy released this week.

The news comes on the heels of a similar climate strategy by the US Army, which in February announced it will build a microgrid at each of its 130 bases worldwide.

“Climate change is one of the most destabilizing forces of our time, exacerbating other national security concerns and posing serious readiness challenges,” said Navy Secretary Carlos Del Toro in a forward to the plan, Climate Action 2030. “Our naval forces, the United States Navy and Marine Corps, are in the crosshairs of the climate crisis: The threat increases instability and demands on our forces while simultaneously impacting our capacity to respond to those demands.”

The Navy views the microgrids as a way to address climate change on two fronts — protecting the flow of electricity at its facilities during disasters while also decarbonizing its energy supply.

The high level plan does not go into detail about where the microgrids will be installed or what kind of microgrids they will be, but it says that the microgrids will leverage “carbon pollution-free power generation and long-duration battery storage to the greatest extent practicable for continuity of operations of critical missions.” 

Leveraging past microgrid successes

Microgrids are not new to the Navy, and it says it intends to build on its past successes. 

One of its better known microgrids can be found at the Naval Submarine Base New London, home to 11 submarine piers in Groton, Connecticut. Noresco won a $83.1 million energy savings performance contract two years ago to expand the microgrid, a project of Connecticut Municipal Electric Energy Cooperative, the Navy and FuelCell Energy, which installed a 7.4-MW fuel cell at the site.

 AES last year completed a microgrid at the Navy’s Pacific Missile Range Facility on the island of Kauai in Hawaii. The project, which brought together AES, the Navy, the Kauai Island Utility Cooperative and the National Renewable Energy Laboratory, leverages 14 MW of solar and a 70-MWh battery energy storage system. Home to the world’s largest instrumented training and test range, the facility now remains powered if its utility transmission feed fails. The microgrid is notable for its black start capabilities. During a grid outage, it can start itself without requiring an emergency diesel generator. The solar and batteries can do the job.

Learn more during a special panel discussion, “Why Microgrids Are Becoming Important to Military Missions,” at Microgrid 2022 in Philadelphia, Pennsylvania, on June 2. Register for the two-day conference here while tickets are still available. 

Meanwhile, Ameresco broke ground last year on a microgrid project at the Norfolk Naval Shipyard in Portsmouth, Virginia, part of a $173 million energy performance contract. The project includes a 19-MW combined heat and power (CHP) plant, a 3-MW battery energy storage system and a microgrid control system.

Ameresco also is undertaking a $58 million energy resilience project, which includes a microgrid, at the Portsmouth Naval Shipyard in Kittery, Maine. Ameresco installed a microgrid controller at the facility in 2015 and is upgrading the controller as well as adding a 7.5-MW combined heat and power plant, which expands upon an existing 14-MW CHP plant at the site, and a 1 MW/2 MWh battery energy storage system, along with other site improvements. 

And last year, Arizona Public Service affiliate Bright Canyon Energy signed a microgrid lease with the Naval Facilities Engineering Systems Command (NAVFAC) in San Diego, California. In the event of a grid outage, the 25-MW microgrid will supply power to both the Marine Corps base and the Department of the Navy.

In keeping with Biden goals

As part of its climate strategy, the Navy also plans to employ electrification of its nontactical fleet, distributed generation, smart grid technology, control system cybersecurity and water conservation, according to the report.

The plan sets the Navy on a path to achieve the Biden administration’s goal of net-zero greenhouse gas emissions by 2050. 

The climate strategy augments a separate resilience strategy the Navy put into motion in 2020 to ensure that key installations can operate off-grid for at least two weeks with on-site energy. The two-week resilience plan mirrors a similar policy already enacted by the Army.

Track news about military microgrids. Subscribe to the free Microgrid Knowledge Newsletter.

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is the editor and founder of EnergyChangemakers.com. She is co-founder and former editor of Microgrid Knowledge.

gettyimages1341067688_sdl__1320x755

Revolutionizing Defense: The Crucial Role of Microgrids and Schneider Electric in Department of Defense Energy Resiliency

Sept. 13, 2024
Last month, the North American Electric Reliability Corporation (NERC) said that U.S. power grids are becoming more susceptible to cyberattacks every day, with vulnerable attack...

MGK_MesaWPCover_2021-09-07_8-14-03

6 Reasons Why Natural Gas is a Distributed Energy Source Bridging Solution

Many experts predict a windfall for the renewable energy industry as companies strive to meet their stated goals by 2035, 2040, or even 2050. But a new white paper from Mesa Solutions...