Design and Development of a Microgrid Control System

Get this PDF emailed to you.

All information that you supply is protected by our privacy policy. By submitting your information you agree to our Terms of Use.

This paper presents a centralized microgrid control system for effective operation of wind turbines and diesel engines coupled to a flywheel electrical storage component on Saint Paul Island. The wind turbines have sufficient capacity to support the entire island without using the diesel engines. Download now to learn more.

More
Share Button

This paper presents a centralized microgrid control system for effective operation of wind turbines and diesel engines coupled to a flywheel electrical storage component on Saint Paul Island. The wind turbines have sufficient capacity to support the entire island without using the diesel engines, allowing the formation of an islanded power system completely powered by renewables.

The proposed strategy includes use of the flywheel, wind turbines, and diesel generators to attain survivability and resilience. The strategy is challenged and validated against different low to turbulent wind gust profiles and low to peak loading. Multiple permissive-based decoupling schemes, tie-flow controls, and heat load trading features are implemented. The tie-line flow control/heat load trading is operated in tandem with local diesel generators and wind turbines to maintain a minimum flow from the utility. The control system was tested using hardware-in-the-loop (HIL) with a simplified electrical model of Saint Paul Island.   To learn more about design and development of the microgrid control system download now.

Share Button