The US Electric Grid: Can’t Swim but Lives on a Boat

Share Button

You might say the U.S. electric grid is like someone who can’t swim but lives on a boat. A big chunk of the grid is located in coastal areas. It’s vulnerable to flooding, and the problem is getting worse.

Water and electricity don’t play well together. Flooding leads to outages and is likely to cause even more as sea levels rise.

That’s the word from a new report by the Union of Concerned Scientists, “Lights Out? Storm Surge, Blackouts, and How Clean Energy Can Help.”

“The effects of such outages can be devastating. As arrestingly demonstrated by recent storms like hurricanes Katrina (2005) and Sandy (2012), lack of electricity following severe weather events can be another and separate disaster, triggering urgent patient evacuations from darkened hospitals, millions of gallons of raw sewage flowing into local waterways as treatment plants go dark, and hours-long lines at the few area service stations able to keep pumps running,” said the report.

Part of the problem, of course, is that a large share of the U.S. population — about one-third — lives by the sea. Where we live we build electrical infrastructure.

The study examined five such places: Delaware Valley, southeastern Virginia, the South Carolina Low Country, southeastern Florida, and the central Gulf Coast. USC looked at how power plants and substations in these areas would fare under various storm scenarios if sea levels rise as projected in 2030, 2050 and 2070.

By 2050, many coastal are likely to see daily high tides more than a foot above present levels, and greater storm surges, says the report.

But here’s the really bad news. We don’t have to wait until 2030 to see the folly of so much electrical infrastructure built near so much water.

“Electricity infrastructure in all five regions already displays significant exposure to storm surge from major storms today,” the study says. For example, about 70 percent of substations are exposed in the central Gulf Coast, a lesser 16 percent in southeastern Florida.

It will get worse, of course, if sea levels rise as expected. Southeastern Florida could see a doubling of major substations exposed to flooding from a Category 3 storm by 2050 and tripling by 2070.

Electrical outages aren’t just inconvenient. They do economic damage. Just a 30-minute interruption could cost a medium or large business or factory more than $15,000. An outage that lasts over two-thirds of a day racks up a $165,000 loss for the same kind of companies, the report says.

UCS recommends several strategies to prepare for coastal flooding of electric grid infrastructure, particularly more focus on developing local energy: microgrids, combined heat and power and renewables plus storage.

Free Resource from Microgrid Knowledge Library

Creating a Resilient, Renewable Grid: Six Challenges Every Utility Must Assess
As renewable energy penetration increases and distributed energy resources (DERs) and electric vehicles (EVs) are integrated into the grid, utilities must make fundamental changes to their grid operations.
We always respect your privacy and we never sell or rent our list to third parties. By downloading this White Paper you are agreeing to our terms of service. You can opt out at any time.

Get this PDF emailed to you.

These technologies can supply power when the rest of the grid fails; they don’t require the long transmission lines prone to failure during storms. They also tend to be less reliant on fuel supply chains that can be disrupted during storms. And they can often be started up quicker than central grid infrastructure.

The full report is available for free download here.

How can coastal areas better protect themselves from power outages? Share your thoughts on our LinkedIn Group, Community Microgrids and Local Energy.

Share Button

About Elisa Wood

Elisa Wood is the chief editor of She has been writing about energy for more than three decades for top industry publications. Her work also has been picked up by CNN, the New York Times, Reuters, the Wall Street Journal Online and the Washington Post.


  1. Our current grid system is annalong and outdated yes but it is our country’s source of transmission and prone to all kinds of weather and nature issues. As new upgrades like smart meters come online things will slowly progress. But others will invest into microgrids that can now pump unlimited energy dc battery banking doing over 2MV that is 2000000 volts of ac power from battery power. Using solar and wind only it is possible to generate this unlimited energy. With over 40 years as a retired master electrician I realize that with digital anything is possible smart switching can lower cost and raise reliability of the operation systems .