Schneider Electric Microgrid Goes Live and We Ask, “Has the Industry Crossed the Chasm?”

April 7, 2017
Two carefully-watched microgrids took big steps forward this week. The Schneider Electric microgrid was unveiled in Boston, and Duke Energy won regulatory approval for its unusual Mt. Sterling microgrid.

Two carefully-watched microgrids took big steps forward April 6. The Schneider Electric microgrid was unveiled in Massachusetts, and Duke Energy won regulatory approval for its unusual Mount Sterling project in North Carolina.

The success of these projects brings good news to the young microgrid industry. But it is still not clear whether microgrids have leapt ‘the chasm’– a pivotal step in a disruptive technology’s market evolution, as described in Geoffrey’s Moore’s book, “Crossing the Chasm.”

Mark Feasel, a Schneider Electric vice president, said that the industry has advanced beyond the pioneer stage and is now accepted by early adopters. But it has yet to across the chasm to broad market acceptance – although others believe it’s on the brink, as more conservative funds begin investing.

Regulatory and technology obstructions are part of what holds microgrids back from the all-important market leap, according to Feasel.

On the technology side, Schneider is working on making microgrids more modular and scalable.

“You’ve got to remove complexity,” Feasel said in a meeting with analysts.“You can’t have 14 inverters and 15 disconnect panels and weird wires running everywhere.”

To that end, Schneider has designed a new Energy Control Center, which connects the facility’s distributed energy resources to the microgrid and provides advanced control.

Located at Schneider’s Boston One Campus, its North American headquarters, the microgrid also features the company’s newly released EcoStruxure Microgrid Advisor, which leverages connected hardware, software and cloud-based analytics to help the campus procure, manage and consume energy more efficiently.

The combination of advanced controls and demand side software allows the microgrid to leverage weather forecast data and other operational site data to optimize energy performance across onsite solar, energy storage, electric vehicle charging, building HVAC and natural gas generation assets.

“It’s the kind of thing that will allow us to make microgrids a little more transactional,” he said.

On the regulatory end, Feasel pointed to work Schneider and others are doing with Advanced Energy Economy on a template for utility rate design. Wide adoption of distributed energy presents utilities with another round of stranded costs – as occurred two decades ago when competition was introduced to the electric industry. But this time, resolving the stranded cost problem is more daunting. Distributed generation adds a new level of regulatory and financial complexity, according to Feasel.

“The investment is not going on the grid, where it used to. It’s going behind the meter. So you have this challenge where we have a rate structure that isn’t always incentivizing the right thing,” he said.

Despite these issues, the market is moving ahead. While Schneider’s customers once installed microgrids largely for resiliency, they now increasingly see them as a way to better manage their energy.

Inside the Schneider Electric microgrid

Located in Andover, Mass., Schneider Electric’s microgrid includes a solar array built and operated by REC Solar. Duke Energy Renewables, which owns a majority interest in REC Solar, owns the microgrid system and solar array and is selling the power to Schneider Electric through a long-term power purchase agreement. By using the microgrid-as-a-service business model, the company was able to build the microgrid without any upfront capital cost.

“The integration of an advanced microgrid at the Schneider Electric campus reduces its energy costs, incorporates more sustainable energy and delivers demand-side efficiency, while also offering resiliency to the facility in the event of a loss of power from the grid,” said Chris Fallon, vice president of Duke Energy Renewables and Commercial Portfolio. “Additionally, in partnership with Schneider, we can research and develop new microgrid technologies, solutions and applications in a real-world environment.”

Learn from microgrid thought leaders. Attend Microgrid 2019, May 14-16 in San Diego, California.

The microgrid is expected to generate more than 520,000 kWh of electricity per year. It includes a 354-kW (AC) solar array with 1,379 solar modules that power the system. The microgrid also incorporates a natural gas generator as an anchor resource, allowing the solar panels to operate during grid outages to maintain critical operations.

The project was built as part of non-exclusive partnership between Schneider and Duke. The partners also are building microgrids for the Public Safety Headquarters and Correctional Facility in Montgomery, Maryland. Duke Energy Renewables will own the two Montgomery County microgrids, which will consist of a 2 MW solar project and two combined heat and power (CHP) units.

The Boston and Maryland microgrids are underway via a partnership between Schneider and Duke Energy’s unregulated arm, which is pursuing microgrid development nationally. Separately, Schneider also is working with Duke’s regulated utility, which is building microgrids within its service territory.

An energy project  that preserves the view

Among Duke’s regulated projects is the unusual Mt. Sterling microgrid, which the North Carolina Utilities Commission recently approved.

The Mount Sterling microgrid includes a 10-kW solar installation and a 95-kWh zinc-air battery storage unit. Built as a non-wires alternative, the small microgrid promises to rid Great Smoky Mountains of four miles of distribution wire and return about 13 acres of wilderness to its natural state.

So rather than obstructing a scenic vista, as so many energy projects do, it’s improving the view.

Duke said it plans to begin project construction in a month.

Track the progress of the Schneider Electric microgrid, the Mount Sterling project and other microgrids. Subscribe to the free Microgrid Knowledge Newsletter. 

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is an award-winning writer and editor who specializes in the energy industry. She is chief editor and co-founder of Microgrid Knowledge and serves as co-host of the publication’s popular conference series. She also co-founded RealEnergyWriters.com, where she continues to lead a team of energy writers who produce content for energy companies and advocacy organizations.

She has been writing about energy for more than two decades and is published widely. Her work can be found in prominent energy business journals as well as mainstream publications. She has been quoted by NPR, the Wall Street Journal and other notable media outlets.

“For an especially readable voice in the industry, the most consistent interpreter across these years has been the energy journalist Elisa Wood, whose Microgrid Knowledge (and conference) has aggregated more stories better than any other feed of its time,” wrote Malcolm McCullough, in the book, Downtime on the Microgrid, published by MIT Press in 2020.

Twitter: @ElisaWood

LinkedIn: Elisa Wood

Facebook:  Microgrids

Exploring the Potential of Community Microgrids Through Three Innovative Case Studies

April 8, 2024
Community microgrids represent a burgeoning solution to meet the energy needs of localized areas and regions. These microgrids are clusters of interconnected energy resources,...

RR201.pg

Optimizing Microgrid Systems: Integrating Renewable Energy Sources and Battery Storage

Download this white paper to learn how integrating renewable energy sources and battery storage can optimize a microgrid systems.