Duke Energy & Duke University Team on Microgrid-Ready CHP Project

May 25, 2016
Duke Energy has struck a deal to build a 21-MW microgrid-ready combined heat and power (CHP) project for Duke University.

Duke Energy has struck a deal to build a microgrid-ready combined heat and power (CHP) project for Duke University.

Pending state regulatory approval, the utility giant will own, build and operate the 21-MW plant under a 35-year agreement with the university.

The $55 million project, which will be fueled by natural gas, will be located on the Duke University campus in Durham.

The CHP plant will not initially operate as a microgrid, but the facility is being designed with an eventual microgrid in mind, according to Randy Wheeless, Duke Energy spokesman.

The university project is just one of Duke Energy’s microgrid-related projects.

Creation of a cost-competitive microgrid is a stated mission of Duke’s Coalition of the Willing (COW), an effort led by the utility to bring together companies to work on the grid-of-the-future. With its Mount Holly microgrid in North Carolina, Duke is testing how to put together an interoperable microgrid that uses equipment from various vendors.

Microgrid-ready and clean

Tallman Trask III, Duke University’s executive vice president, said that the CHP project will help the college move toward climate neutrality.

“By combining steam and electricity generation systems, we can increase efficiency and reduce our overall consumption by millions of units of energy each year, and have a positive effect on the community at large,” he said

In all, the microgrid-ready CHP project is expected to cut carbon dioxide emissions by 25 percent. CHP plants reduce emissions by producing more energy with less fuel than conventional systems. CHP does so by using the waste heat created from producing power, rather than dispersing the byproduct into the environment.

In this case, the emissions reductions come from displacing the university’s currrent electricity mix and boilers.

The CHP facility will be designed to produce roughly 75,000 pounds per hour of steam, which would be sold to Duke University for heating water, among other things.

Duke Energy is describing the CHP plant as one of the most efficient in its generating fleet.

“This project will provide a cleaner and more diverse energy mix for the community and provide the value of thermal energy for the university,” said David Fountain, Duke Energy North Carolina president. “The innovative approach provides multiple benefits to a large customer like Duke University and is a cost-effective generation asset for Duke Energy and our customers in North Carolina.”

The CHP facility would be connected to an existing Duke Energy substation located on the campus, which serves the university and its medical center as well as other customers. Once the facility is upgraded to a microgrid, it will be able to isolate the critical loads on the campus and provide back-up power should the central grid experience an outage.

To go forward, the project requires a certificate of public convenience and necessity with the North Carolina Utilities Commission.  Duke Energy Carolinas hopes to have the project online in 2018.

Get free delivery of news on all things microgrid.  Subscribe to the Microgrid Knowledge newsletter.

About the Author

Elisa Wood | Editor-in-Chief

Elisa Wood is an award-winning writer and editor who specializes in the energy industry. She is chief editor and co-founder of Microgrid Knowledge and serves as co-host of the publication’s popular conference series. She also co-founded RealEnergyWriters.com, where she continues to lead a team of energy writers who produce content for energy companies and advocacy organizations.

She has been writing about energy for more than two decades and is published widely. Her work can be found in prominent energy business journals as well as mainstream publications. She has been quoted by NPR, the Wall Street Journal and other notable media outlets.

“For an especially readable voice in the industry, the most consistent interpreter across these years has been the energy journalist Elisa Wood, whose Microgrid Knowledge (and conference) has aggregated more stories better than any other feed of its time,” wrote Malcolm McCullough, in the book, Downtime on the Microgrid, published by MIT Press in 2020.

Twitter: @ElisaWood

LinkedIn: Elisa Wood

Facebook:  Microgrids

In the Race to 100% Renewable Energy, Islands Will Win — With the Right Grid Improvements

March 18, 2024
Looked at individually, islands are often overlooked as unimportant players on the global economic stage. Smaller geographies, smaller communities, fewer resources, and often ...

RR201.pg
RR201.pg
RR201.pg
RR201.pg
RR201.pg

Optimizing Microgrid Systems: Integrating Renewable Energy Sources and Battery Storage

Download this white paper to learn how integrating renewable energy sources and battery storage can optimize a microgrid systems.